Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Thanjavur Ramabhadran
Sarangarajan, ${ }^{\text {a }}$ Krishnaswamy
Panchanatheswaran, ${ }^{\text {b }}$ *
Kanagasabapathy
Thanikachalam ${ }^{\text {b }}$ and Ramasubbu Jeyaraman ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Shanmugha Arts Science Technology and Research Academy (SASTRA), Tirumalaisamudram, Thanjavur, India, and ${ }^{\text {b }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India

Correspondence e-mail: panch 45@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.042$
$w R$ factor $=0.100$
Data-to-parameter ratio $=8.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3,5-Bis(3-chlorophenyl)-4-formyl-2,6-dimethyl-cyclohexan-1-one

The structure of the title molecule, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$, reveals a chair conformation for the cyclohexane ring in which all the substituents occupy equatorial positions.

Comment

During attempts to prepare a pyran derivative by the Michael condensation of diethyl ketone and o-chlorobenzaldehyde, an unexpected product, the title compound, (I) (Fig. 1), was obtained as a minor product. The present investigation was undertaken to ascertain the structure and conformation of (I), since they cannot be assigned conclusively from ${ }^{1} \mathrm{H}$ NMR data.

(I)

The cyclohexane ring is in a chair conformation, as shown by the torsion angles (Table 1) around the $\mathrm{C}-\mathrm{C}$ bonds involving the six C atoms ($\mathrm{C} 1-\mathrm{C} 6$). The torsion angles deviate from the angle of 56° expected for a perfect chair conformation (Kalsi, 1997) as a result of the $s p^{2}$-hybridized atom C1. The bond lengths and angles within the cyclohexane ring are in the ranges 1.503 (6) -1.551 (6) \AA and 106.6 (3) -116.9 (4) ${ }^{\circ}$, respectively. The equatorial orientations of all the substituents are confirmed by the torsion angles of about 180° formed by the external atom and the other three ring atoms. The dihedral angle between the planes of the phenyl rings is $61.9(2)^{\circ}$. The chair conformation observed in (I) is comparable to that observed in the thioketal of N-methyl-2,6-diphenyl-3-iso-

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
propylpiperdin-4-one (Sujatha, 1995), but contrasts with the twist-boat conformation of the N-nitroso derivative of 2,6-bis(2-chlorophenyl-3,5-dimethylpiperidin-4-one (Sukumar et al., 1993). Atoms O10, C9, C4, O7 and C1 are coplanar, the maximum deviation being 0.014 (2) \AA for O10; the molecule is nearly symmetrical with respect to this plane.

The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, the most significant of which are (C9) $\mathrm{H} 9 \cdots \mathrm{O} 7(-1+x, y, z)$ and (C 16$) \mathrm{H} 16 \cdots \mathrm{O} 7\left(1-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ with $\mathrm{H} \cdots \mathrm{O}$ distances of 2.45 and $2.42 \AA$, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ angles of 131 and 147°, respectively. The former interactions contribute to chain formation along the a axis; the chains are interlinked by the latter interactions. Another intermolecular interaction exists between atoms C 4 and $\mathrm{O} 10\left(\frac{1}{2}+x, \frac{1}{2}-y,-z\right)$ through atom H 4 , with an $\mathrm{H} \cdots \mathrm{O}$ distance of $2.56 \AA$ and an angle of 161° at H 4 . The formation of (I), although unexpected, can be explained by the condensation of the dibenzylideneacetone derivative formed in situ with the acetaldehyde present in ethanol.

Experimental

The title compound was obtained by the reaction of diethyl ketone with o-chlorobenzaldehyde in 80% ethanol. Diffraction quality crystals were obtained by recrystallization from ethanol. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): $\delta 0.92(d, 6 \mathrm{H}, J=6.3), 2.87(m, 2 \mathrm{H}), 3.93(t, 2 \mathrm{H}, J=$ 12.0), $3.38\left(d t, 1 \mathrm{H},{ }^{3} J=4.8,{ }^{2} J=12.2\right), 7.1-7.8(m, 8 \mathrm{H}), 9.21(d, 1 \mathrm{H}, J=$ 4.5).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=375.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.635$ (2) \AA
$b=12.1814$ (15) \AA
$c=20.175$ (4) \AA
$V=1876.4$ (7) \AA^{3}
$Z=4$
$D_{x}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$

```
Mo \(K \alpha\) radiation
Cell parameters from 25 reflections
\(\theta=2-12^{\circ}\)
\(\mu=0.36 \mathrm{~mm}^{-1}\)
\(T=293\) (2) K
Translucent block, colourless
\(0.2 \times 0.2 \times 0.1 \mathrm{~mm}\)
```


Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.982, T_{\text {max }}=0.999$
1904 measured reflections
1904 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0344 P)^{2}\right. \\
\quad+0.6059 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.18 \text { e } \AA_{\circ}^{-3}
\end{array} .
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.100$
$S=1.15$
1904 reflections
226 parameters
H -atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$57.4(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-61.8(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-56.5(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-58.4(5)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$61.5(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$57.9(4)$

Since the Friedel pairs were not measured during the data collection, we were unable to determine the absolute structure; in any case, the molecule is achiral. All the H atoms were fixed geometrically and allowed to ride on the parent C atoms, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, tertiary $\mathrm{C}-\mathrm{H}=0.97 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$. The displacement parameters $U_{\text {iso }}(\mathrm{H})$ were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.

TRS thanks the Vice-Chancellor and Management of SASTRA for support and encouragement.

References

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Kalsi, P. S. (1997). Stereochemistry: Conformation and Mechanism, p. 236. New Delhi: New Age International (P) Limited Publishers.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sujatha, M. (1995). Synthesis and Stereochemistry of Certain Spiroheterocycles. PhD dissertation, Bharathidasan University, Tiruchirappalli, India.
Sukumar, N., Ponnusamy, M. N., Thenmozhiyal, J. C. \& Jeyaraman, R. (1993). J. Crystallogr. Spectrosc. Res. 11, 871-875.

Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

